Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2227954

ABSTRACT

Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralising activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy. Graphical

2.
iScience ; 26(3): 106126, 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2220841

ABSTRACT

Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralizing activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy.

3.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2126150

ABSTRACT

Rodents are widely used for the development of COVID-19-like animal models, the virological outcome being determined through several laboratory methods reported in the literature. Our objective was to assess the agreement between methods performed on different sample types from 342 rodents experimentally infected with SARS-CoV-2 (289 golden Syrian hamsters and 53 K18-hACE2 mice). Our results showed moderate agreement between methods detecting active viral replication, and that increasing viral loads determined by either RT-qPCR or infectious viral titration corresponded to increasing immunohistochemical scores. The percentage of agreement between methods decreased over experimental time points, and we observed poor agreement between RT-qPCR results and viral titration from oropharyngeal swabs. In conclusion, RT-qPCR and viral titration on tissue homogenates are the most reliable techniques to determine the presence and replication of SARS-CoV-2 in the early and peak phases of infection, and immunohistochemistry is valuable to evaluate viral distribution patterns in the infected tissues.

4.
Transbound Emerg Dis ; 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2053047

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic in humans, is able to infect several domestic, captive and wildlife animal species. Since reverse zoonotic transmission to pets has been demonstrated, it is crucial to determine their role in the epidemiology of the disease to prevent further spillover events and major spread of SARS-CoV-2. In the present study, we determined the presence of virus and the seroprevalence to SARS-CoV-2, as well as the levels of neutralizing antibodies (nAbs) against several variants of concern (VOCs) in pets (cats, dogs and ferrets) and stray cats from North-Eastern of Spain. We confirmed that cats and dogs can be infected by different VOCs of SARS-CoV-2 and, together with ferrets, are able to develop nAbs against the ancestral (B.1), Alpha (B.1.1.7), Beta (B.1.315), Delta (B.1.617.2) and Omicron (BA.1) variants, with lower titres against the latest in dogs and cats, but not in ferrets. Although the prevalence of active SARS-CoV-2 infection measured as direct viral RNA detection was low (0.3%), presence of nAbs in pets living in COVID-19-positive households was relatively high (close to 25% in cats, 10% in dogs and 40% in ferrets). It is essential to continue monitoring SARS-CoV-2 infections in these animals due to their frequent contact with human populations, and we cannot discard the probability of a higher animal susceptibility to new potential SARS-CoV-2 VOCs.

5.
Viruses ; 14(9)2022 09 09.
Article in English | MEDLINE | ID: covidwho-2033138

ABSTRACT

A wide range of animal species are susceptible to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Natural and/or experimental infections have been reported in pet, zoo, farmed and wild animals. Interestingly, some SARS-CoV-2 variants, such as B.1.1.7/Alpha, B.1.351/Beta, and B.1.1.529/Omicron, were demonstrated to infect some animal species not susceptible to classical viral variants. The present study aimed to elucidate if goats (Capra aegagrus hircus) are susceptible to the B.1.351/Beta variant. First, an in silico approach was used to predict the affinity between the receptor-binding domain of the spike protein of SARS-CoV-2 B.1.351/Beta variant and angiotensin-converting enzyme 2 from goats. Moreover, we performed an experimental inoculation with this variant in domestic goat and showed evidence of infection. SARS-CoV-2 was detected in nasal swabs and tissues by RT-qPCR and/or immunohistochemistry, and seroneutralisation was confirmed via ELISA and live virus neutralisation assays. However, the viral amount and tissue distribution suggest a low susceptibility of goats to the B.1.351/Beta variant. Therefore, although monitoring livestock is advisable, it is unlikely that goats play a role as SARS-CoV-2 reservoir species, and they are not useful surrogates to study SARS-CoV-2 infection in farmed animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/veterinary , Goats , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580429

ABSTRACT

Several cases of naturally infected dogs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported despite the apparently low susceptibility of this species. Here, we document the first reported case of infection caused by the Delta (B.1.617.2) variant of concern (VOC) in a dog in Spain that lived with several household members suffering from Coronavirus Infectious Disease 2019 (COVID-19). The animal displayed mild digestive and respiratory clinical signs and had a low viral load in the oropharyngeal swab collected at the first sampling. Whole-genome sequencing indicated infection with the Delta variant, coinciding with the predominant variant during the fifth pandemic wave in Spain. The dog seroconverted, as detected 21 days after the first sampling, and developed neutralizing antibodies that cross-neutralized different SARS-CoV-2 variants. This study further emphasizes the importance of studying the susceptibility of animal species to different VOCs and their potential role as reservoirs in the context of COVID-19.


Subject(s)
COVID-19/veterinary , Dog Diseases/virology , SARS-CoV-2/isolation & purification , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Dog Diseases/diagnosis , Dog Diseases/transmission , Dogs , Female , Genome, Viral/genetics , Pets/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Zoonoses/diagnosis , Viral Zoonoses/transmission , Viral Zoonoses/virology
7.
Viruses ; 13(9)2021 08 25.
Article in English | MEDLINE | ID: covidwho-1374532

ABSTRACT

To date, no evidence supports the fact that animals play a role in the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus infectious disease 2019 (COVID-19). However, several animal species are naturally susceptible to SARS-CoV-2 infection. Besides pets (cats, dogs, Syrian hamsters, and ferrets) and farm animals (minks), different zoo animal species have tested positive for SARS-CoV-2 (large felids and non-human primates). After the summer of 2020, a second wave of SARS-CoV-2 infection occurred in Barcelona (Spain), reaching a peak of positive cases in November. During that period, four lions (Panthera leo) at the Barcelona Zoo and three caretakers developed respiratory signs and tested positive for the SARS-CoV-2 antigen. Lion infection was monitored for several weeks and nasal, fecal, saliva, and blood samples were taken at different time-points. SARS-CoV-2 RNA was detected in nasal samples from all studied lions and the viral RNA was detected up to two weeks after the initial viral positive test in three out of four animals. The SARS-CoV-2 genome was also detected in the feces of animals at different times. Virus isolation was successful only from respiratory samples of two lions at an early time-point. The four animals developed neutralizing antibodies after the infection that were detectable four months after the initial diagnosis. The partial SARS-CoV-2 genome sequence from one animal caretaker was identical to the sequences obtained from lions. Chronology of the events, the viral dynamics, and the genomic data support human-to-lion transmission as the origin of infection.


Subject(s)
Animal Diseases/virology , COVID-19/veterinary , Lions , SARS-CoV-2 , Animal Diseases/diagnosis , Animal Diseases/immunology , Animal Diseases/transmission , Animals , Animals, Wild , Animals, Zoo , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Genome, Viral , Genomics/methods , Host-Pathogen Interactions/immunology , Male , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spain
SELECTION OF CITATIONS
SEARCH DETAIL